Superconvergence Studies of Quadrilateral Nonconforming Rotated Q1 Elements

نویسندگان

  • PINGBING MING
  • YUN XU
چکیده

For the nonconforming rotated Q1 element over a mildly distorted quadrilateral mesh, we propose a superconvergence property at the element center, the vertices and the midpoints of four edges. Numerics are presented to confirm this observation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two lower order nonconforming rectangular elements for the Reissner-Mindlin plate

In this paper, we propose two lower order nonconforming rectangular elements for the Reissner-Mindlin plate. The first one uses the conforming bilinear element to approximate both components of the rotation, and the modified nonconforming rotated Q1 element to approximate the displacement, whereas the second one uses the modified nonconforming rotated Q1 element to approximate both the rotation...

متن کامل

Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems

We construct and analyze a mixed finite volume method on quadrilateral grids for elliptic problems written as a system of two first order PDEs in the state variable (e.g., pressure) and its flux (e.g., Darcy velocity). An important point is that no staggered grids or covolumes are used to stabilize the system. Only a single primary grid system is adopted, and the degrees of freedom are imposed ...

متن کامل

Multigrid and multilevel methods for nonconforming Q1 elements

In this paper we study theoretical properties of multigrid algorithms and multilevel preconditioners for discretizations of second-order elliptic problems using nonconforming rotated Q1 finite elements in two space dimensions. In particular, for the case of square partitions and the Laplacian we derive properties of the associated intergrid transfer operators which allow us to prove convergence...

متن کامل

Nonconforming Wilson Element for a Class of Nonlinear Parabolic Problems

This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx er...

متن کامل

Nonconforming elements in least-squares mixed finite element methods

In this paper we analyze the finite element discretization for the first-order system least squares mixed model for the second-order elliptic problem by means of using nonconforming and conforming elements to approximate displacement and stress, respectively. Moreover, on arbitrary regular quadrilaterals, we propose new variants of both the rotated Q1 nonconforming element and the lowest-order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005